Robust regression methods for intensive care monitoring
نویسندگان
چکیده
منابع مشابه
Robust methods for heteroskedastic regression
Heteroskedastic regression data are modelled using a parameterized variance function. This procedure is robustified using a method with high breakdown point and high efficiency, which provides a direct link between observations and the weights used in model fitting. This feature is vital for the application, the analysis of international trade data from the European Union. Heteroskedasticity is...
متن کاملRobust outcome prediction for intensive-care patients.
Missing data are a major plague of medical databases in general, and of Intensive Care Unit databases in particular. The time pressure of work in an Intensive Care Unit pushes the physicians to omit randomly or selectively record data. These different omission strategies give rise to different patterns of missing data and the recommended approach of completing the database using median imputati...
متن کاملRobust Methods for Partial Least Squares Regression
Partial Least Squares Regression (PLSR) is a linear regression technique developed to deal with high-dimensional regressors and one or several response variables. In this paper we introduce robustified versions of the SIMPLS algorithm being the leading PLSR algorithm because of its speed and efficiency. Because SIMPLS is based on the empirical cross-covariance matrix between the response variab...
متن کاملELECTRE: Robust ordinal regression for outranking methods
Article history: Received 25 October 2010 Accepted 31 March 2011 Available online 8 April 2011
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Critical Care
سال: 2007
ISSN: 1364-8535
DOI: 10.1186/cc5598